Ecophysiology and growth of advance red spruce and balsam fir regeneration after partial cutting in yellow birch–conifer stands

DANIEL DUMAIS1,2 and MARCEL PRÉVOST1
1 Ministère des Ressources naturelles et de la Faune, Forêt Québec, Direction de la recherche forestière, 2700 rue Einstein, Québec, QC G1P 3W8, Canada
2 Corresponding author (daniel.dumais@mrf.gouv.qc.ca)

Received October 19, 2007; accepted March 19, 2008; published online June 2, 2008

Summary We investigated ecophysiological and growth responses of short (0.4 to 1.3 m in height) advance regeneration of red spruce (Picea rubens Sarg.) and balsam fir (Abies balsamea L.) six years after removal of 0, 40, 50, 60 and 100% of the overstory basal area (BA) in two yellow birch–conifer stands. Partial cuts significantly increased stomatal conductance of red spruce only. Light-saturated photosynthesis (leaf-area basis) of both species increased with BA removal, but unlike red spruce, specific leaf area (SLA) of balsam fir decreased with increased cutting intensity. Partial cuts appreciably increased the concentration of N and Ca in red spruce and balsam fir foliage, respectively, and resulted in decreased foliar concentrations of K in red spruce and Mg in balsam fir. The height and lateral growth of both species increased with BA removal, although partial cuts were more beneficial to balsam fir. The data suggest that short advance regeneration of red spruce and balsam fir can coexist under partial overstory conditions, but balsam fir has physiological characteristics and a capacity for morphological adjustment (SLA) that places it at an advantage when in competition with red spruce.

Keywords: crown morphology, gas exchange, natural regeneration, nutrient status, partial overstory, photosynthetic acclimation, specific leaf area, temperate mixed-wood forest, water stress.

Introduction

Red spruce (Picea rubens Sarg.) is a conifer found exclusively in northeastern North America. It can live for 400 years and its wood is prized by both the forest industry and specialized industries such as manufacturers of musical instruments. A forest management strategy unsuited to the ecophysiological characteristics of red spruce has caused a scarcity of the species in its natural range (Dumais and Prévost 2007). Red spruce seedlings and saplings are well adapted to partial shade (Alexander et al. 1995, Major et al. 2003) and to cool conditions (Vann et al. 1994, Day 2000) found under a partial overstory or in gaps smaller than 800 m² (Kneeshaw and Prévost 2007). Natural canopy openings created by windthrow and insect epidemics are therefore the ecological basis of red spruce regeneration (Foster and Reiners 1983, White et al. 1985), and long-term conservation of this shade-tolerant species depends, largely, on advance regeneration.

Studies, cited in Dumais and Prévost (2007), indicate that partial overstory removal favors physiological acclimation and subsequent growth of red spruce advance regeneration. However, several authors have shown that balsam fir (Abies balsamea L.) advance regeneration generally has better juvenile growth, and can adapt more rapidly than red spruce to increased irradiances after canopy opening (Davis 1989, Moores et al. 2007, Pothier and Prévost 2008). Although juvenile growth of these species has often been compared, there is a need to study the specific ecophysiological characteristics of red spruce and balsam fir to explain the difference in their growth under partial overstory conditions.

It is well known that canopy opening causes some stress to advance regeneration, especially to that of species adapted to low-light (Tucker et al. 1987, Mohammed and Parker 1999). The capacity for, and rate of, physiological and morphological acclimation to increased solar irradiance differ among species (Renninger et al. 2007). Acclimation may require years and cause a delay in the onset of significant shoot growth, because the majority of carbohydrates are being allocated to root growth (Kneeshaw et al. 2002). Once advance regeneration has fully acclimated, shoot growth should be favored by the new conditions. However, the moderate light conditions that are essential for survival and physiological acclimation of red spruce after canopy opening may not be optimal for subsequent growth, especially when there is competition from balsam fir (see Blum 1990, Seymour 1995).

We investigated ecophysiological and growth responses of short advance regeneration of red spruce and balsam fir following removal of varying proportions of the overstory. We predicted that the shoot growth response in both species would be more perceptible a few years after overstory removal when full acclimation has occurred than immediately after cutting. We hypothesized that physiological and morphological responses differ between red spruce and balsam fir and that relative growth performance can be explained by differences in ecophysiological characteristics.
Materials and methods

Study sites and experimental design

The study was carried out in two yellow birch (Betula alleghaniensis Britt.)–conifer stands in eastern Quebec, Canada. The Armagh site (46°50’N, 70°32’W) is located in the sugar maple (Acer saccharum Marsh.)–yellow birch bioclimatic domain, and the Duchesnay site (46°54’N, 71°41’W) is in the balsam fir–yellow birch bioclimatic domain. The stands at both sites are composed mainly of yellow birch, red spruce, balsam fir and red maple (A. rubrum L.). Sugar maple, paper birch (B. papyrifera Marsh.), American beech (Fagus grandifolia Ehrh.) and eastern hemlock (Tsuga canadensis (L.) Carr.) are present as companion species. The stands have an uneven-aged structure and the coniferous advance regeneration is dominated by red spruce and balsam fir seedlings and saplings.

At each location, the study comprised three completely randomized blocks, each containing five treatments: removal of 0, 40, 50, 60 and 100% of merchantable basal area (BA). The study sites and the complete experimental design are described in detail in Prévost (2008).

Plant material

Six years after cutting, the study was carried out on advance red spruce and balsam regeneration, varying from 0.4 to 1.3 m in height, which had been randomly selected in a 50 x 50 m central plot of each experimental unit (EU). The selected trees were free of insect pests, pathogens and morphological defects. Information about microtopography, neighboring vegetation and canopy opening were noted. When necessary, tree selection was adjusted to cover a variety of microenvironmental conditions.

Ecophysiological parameters

Field measurements were made on three red spruce trees per EU at Armagh (2003) and on three red spruce and two balsam fir trees per EU at Duchesnay (2004). Sampling was conducted on three dates (mid-July, mid-August and mid-September). Gas exchange measurements were carried out at ambient CO2 concentration (about 390 ppm) on a 1-year-old shoot (4 cm in length) on a randomly selected lateral branch in the upper half of each tree. Measurements were confined to 1-year-old foliage because bud break in red spruce is late and new foliage is too fragile to be handled easily without damage in midsummer. The use of 1-year-old foliage may also be justified by the major contribution it makes to the photosynthetic production of the crown (Zimmermann et al. 1988) and because the influence of developing needles can be avoided (Radoglou and Teskey 1997), which is desirable because net photosynthesis generally increases during needle development, but in an unpredictable way depending on light conditions. Light-saturated photosynthetic rate (Amax), stomatal conductance (G) and the ratio of intercellular to ambient CO2 concentration (Cic/Can) were measured between 1000 and 1530 h, solar time, with a photosynthesis system (LCA4, Analytical Development, Hoddesdon, U.K.) equipped with a 0.2-l chamber. Preliminary tests indicated that Amax occurred at a photosynthetic photon flux (PPF) of about 1000 µmol m–2 s–1. Ambient light was supplemented with light from a 20-W dichroic halogen lamp unit adapted to fit the chamber lid to ensure that PPF remained slightly above the target value for light saturation. Air temperature and relative humidity inside the chamber were recorded. After the gas exchange measurements, the shoot was severed and shoot water potential (Ψs) measured with a pressure chamber (Model 600, PMS Instruments, Corvallis, OR). The shoot was then enclosed in a plastic bag, and placed in a cooler for transport to the laboratory. Shoots were frozen later the same day in a cold room (–5 ± 1 °C) in preparation for subsequent analyses. The ecophysiological measurements in the clearcut were conducted once (mid-August) in one block at each site.

The 1-year-old foliage used for gas exchange measurements were scanned and their total projected area determined with imaging software (WinSEEDLE, Régent Instruments, Québec, QC). Current-year, 1-year-old, and the remaining foliage of each shoot was then separated, dried at 65 °C for 48 h, and weighed.

Analyses of the main foliar elements were performed on 100 mg of ground dry needles. Foliage was digested with concentrated sulfuric acid in the presence of selenium and hydrogen peroxide at 370 °C for 1 h (Walinga et al. 1995). Concentrations of phosphorus (P), potassium (K), calcium (Ca), and magnesium (Mg) were measured by plasma atomic emission spectrometry (ICAP 61E, Thermo Jarrel Ash Instruments, Franklin, MA). Nitrogen (N) Kjeldahl was measured by colorimetry (Quickchem 8000, Lachat Instruments, Milwaukee, WI).

Morphological parameters

The 1-year-old foliage used for gas exchange measurements was also used to determine specific leaf area (SLA). The other morphological measurements were taken on at least eight red spruce and five balsam fir trees per EU, including those used for physiological measurements. Initial height (H0), final height (Hf), final diameter (Df), height growth (HG) and lateral growth (LG) were measured. For HG, post-cutting internode increments (T1 to T6) were measured. Only one branch per whorl was randomly chosen for LG measurements, and each branch increment adjacent to T1 to T6 was measured. The degree of apical control was assessed based on the annual HG/LG ratio (Greis and Kellomäki 1981).

Data analysis

Statistics were performed by analyses of variance (and covariance), and contrasts were used to separate treatment effects into simple degrees of freedom (P ≤ 0.05). For both locations, site was considered a random effect. The ecophysiology of each species was analyzed separately (balsam fir was investigated only at Duchesnay). The relationships between morphological parameters and H0 were subjected to regression analysis to determine the pertinence of using H0 as a covariate in the model (covariance analysis). Homogeneity of variances and normality of data were verified graphically. To satisfy the
assumptions of variance (and covariance) analysis, a square root transformation was used for HG and LG analyses, and data were retransformed into their original form for presentation. Statistical analyses were not conducted on the physiological parameters measured in the clearcut, because only a few red spruce survivors were available.

Results

Daytime shoot water potential

Partial overstory removal did not significantly affect Ψ_d in either species (Tables 1 and 2). However, Ψ_d in red spruce was 34% lower in the clearcut than in the partial cuts, whereas clearcutting only slightly reduced Ψ_d in balsam fir (Figure 1). In both species, Ψ_d increased linearly with time ($P \leq 0.0542$, data not shown).

Stomatal conductance and photosynthesis

In red spruce, G increased quadratically with partial BA removal, but the effect was less pronounced in August ($P = 0.0395$, Table 1, Figure 1). In balsam fir, G did not increase significantly following partial cutting (Table 2). In the clearcut, G in red spruce was 19% higher than in the partial cuts, whereas G in balsam fir did not differ appreciably.

In both species, area-based A_{max} increased linearly with partial BA removal ($P \leq 0.0348$, Tables 1 and 2, Figure 1), and values were higher in the clearcut (+39% for red spruce and +59% for balsam fir) than in the partial cuts. The A_{max} in both species also increased with time, exhibiting a linear relationship for red spruce ($P = 0.0028$), and a quadratic relationship for balsam fir ($P = 0.0056$, data not shown). Mass-based A_{max} increased linearly with partial BA removal in red spruce ($P = 0.0020$). Although A_{max} did not change significantly with BA removal in balsam fir, it was 18% lower in the clearcut than in the partial cuts. Cutting did not significantly affect the C/C_a ratio in either species, but values decreased linearly with time ($P \leq 0.0357$, Tables 1 and 2, data not shown).

Specific leaf area

Partial cuts did not significantly affect SLA in red spruce (Table 1), but it was 26% lower in the clearcut than in other treat-
ments (Figure 2). Unlike balsam fir, SLA in red spruce varied with time, increasing from July to August and decreasing in September ($P = 0.0008$, data not shown). In balsam fir, SLA decreased linearly with increasing removal of BA ($P < 0.0001$, Table 2) and was 42% lower in the clearcut than in the partial cuts. In general, SLA was higher in balsam fir than in red spruce.

Nutrient concentrations in 1-year-old foliage

Foliar concentrations of N, P and K in both species, and Ca and Mg in red spruce, increased with time ($P \leq 0.0324$, Tables 1 and 2, data not shown). In red spruce, N concentration increased linearly with partial BA removal ($P < 0.0001$, Figure 3), but in balsam fir, N concentration was not significantly affected. Partial cuts did not significantly affect P concentrations in either species. In red spruce, the difference in foliar K concentrations among cutting intensities increased significantly over time ($P = 0.0213$). Partial cuts did not significantly affect K concentration in balsam fir. Potassium concentration was lower in the clearcut than in the partial cuts. In both species, Ca concentration increased linearly with partial BA removal ($P \leq 0.0498$), but the effect was less pronounced in red spruce (Figure 3). In the clearcut, Ca concentration in balsam fir was higher than in the partial cuts. Partial cutting did not significantly affect Mg concentration in red spruce, whereas in balsam fir it decreased linearly with increasing partial BA removal ($P = 0.0380$), and was 26% lower in the clearcut than in the partial cuts. Similar responses were observed in current-year foliage, but with concentrations being higher than in 1-year-old foliage (data not shown).

Height and diameter

The H_0 decreased linearly with increasing BA removal ($P < 0.0001$, Table 3, data not shown), but it differed little among the partial cutting treatments (Figure 4). Red spruce was initially taller than balsam fir (54 versus 45 cm; $P < 0.0001$). Both H_0 and D_b increased linearly with BA removal ($P < 0.0001$, data not shown). Balsam fir surpassed red spruce ($P = 0.0004$), because of a superior H_0 in the partial cuts ($P = 0.0186$). Compared with the control (12 mm) and the clearcut (26 mm), D_b was similar in all the partial cuts (16 to 17 mm).

Figure 1. Relationship between basal area removal and daytime shoot water potential (Ψ_d), stomatal conductance (G), light-saturated photosynthesis (A_{max}), ratio of intercellular to ambient CO2 concentration (C_i/C_a), measured in 1-year-old foliage of *Picea rubens* (●) and *Abies balsamea* (○). For date interaction: July = ▲ with solid line; August = ■ with dashed line; September = ● with dotted line). Values are the mean of 18 spruces (six in the clearcut, no statistic) and six firs (two in the clearcut, no statistic). Otherwise, values are the mean of all dates (54 spruces, six in the clearcut, and 18 firs, two in the clearcut). Vertical bars represent standard errors.

Figure 2. Relationship between basal area removal and specific leaf area (SLA) measured in 1-year-old foliage of *Picea rubens* (●) and *Abies balsamea* (○). Values are the mean of 54 spruces (six in the clearcut, no statistic) and 18 firs (two in the clearcut, no statistic). Vertical bars represent standard errors.
Height growth, lateral growth and apical control

In both species, HG increased linearly with BA removal \((P < 0.0001, \text{Table 3, data not shown}) \). Balsam fir grew more rapidly than red spruce \((P = 0.0002, \text{Figure 4}) \), and showed higher gains in partial cuts \((6 \text{ cm year}^{-1} \text{ vs. } 4 \text{ cm year}^{-1}) \). Response over time was cubic \((P = 0.0427) \), and the differences among the cutting intensities and the species changed significantly over time \((P = 0.0002) \).

Lateral growth increased quadratically with BA removal \((P = 0.0196, \text{Table 3, data not shown}) \). Balsam fir grew more rapidly than red spruce \((P < 0.0001, \text{Figure 4}) \), and showed greater gains in partial cuts than red spruce. Differences in LG among the cutting intensities changed significantly between species \((P = 0.0311, \text{data not shown}) \). Response of LG over time was cubic \((P = 0.0303) \), and the differences among the cutting intensities and the differences among species both changed significantly over time \((P < 0.0001) \).

The HG/LG ratio increased linearly with BA removal \((P < 0.0001, \text{Table 3, data not shown}) \) and the effect was more pronounced in red spruce than in balsam fir \((P = 0.0048) \). Response of HG/LG over time was cubic \((P = 0.0230, \text{Figure 4}) \), and the differences among the cutting intensities and species changed significantly over time \((P = 0.0214) \).

Discussion

Physiological responses

Our measurements on the water relations of red spruce and balsam fir 6 years after treatment showed that both species acclimated to the conditions created by partial cutting. Even in the clearcut, where mean \(\Psi_d \) of red spruce fell to \(-1.2 \text{ MPa}\), we observed no decline in gas exchange (Figure 1). Under partial overstory conditions, the \(C_i/C_a \) ratio in both species did not differ with cutting intensity, indicating that \(G \) did not limit \(A_{\max} \) (Stewart and Bernier 1995). Compared with balsam fir, high \(G \) in red spruce corresponded to lower \(\Psi_d \), suggesting that the higher water stress observed in red spruce was caused by higher transpirational losses. Results of other studies suggest that red spruce trees generally have higher transpiration rates than balsam fir trees (Alexander et al. 1995, Reinhardt and Smith 2008). Partial overstory removal improved \(A_{\max} \) similarly in both red spruce and balsam fir, indicating comparable photosynthetic acclimation in these species. Increases in \(A_{\max} \) with increasing light exposure are reported for spruce and fir species, although such adjustments are not a general rule. For example, Norway spruce \((Picea abies (L.) Karst.) \) can acclimate to high PPF by increasing \(A_{\max} \) (Grassi and Bagnaresi 2001, Stanciu and O’Hara 2006). In contrast, Black et al. (2005) observed no \(A_{\max} \) difference between fully exposed and 50% shaded-shoots of Sitka spruce \((P . sitchensis (Bong.) Carr.) \). Johnson and Smith (2005) found that \(A_{\max} \) in Fraser fir \((Abies fraseri (Pursh) Poiret) \) was higher at open-canopy sites than at closed-canopy sites. However, Landhäusser and Lieffers (2001) observed little plasticity of \(A_{\max} \) in balsam fir compared with white spruce. Pothier and Prévost (2002) also reported no effects of 0, 35, 50, 65 and 100% BA removals on...
balsam fir A_{max} in a trembling aspen–conifer stand, 3 and 4 years after cutting.

Specific leaf area response

Generally, an increase in solar irradiance results in the modifications in leaf anatomy and morphology (Tucker et al. 1987, Grassi and Bagnaresi 2001). We observed a significant decrease in SLA in balsam fir with increasing light (Figure 2), which accords with several studies on fir species (Tucker et al. 1987, Pothier and Prévost 2002, Mori and Takeda 2004, Stancioiu and O’Hara 2006). However, partial overstory removal did not change SLA in red spruce. Day et al. (2001) also reported similar SLA values for sun and shade foliage of young red spruce trees. Other studies reported that SLA values in white spruce and Norway spruce were greater in shade than in exposed areas (Man and Lieffers 1997, Grassi and Bagnaresi 2001, Grassi and Giannini 2005). Our data indicate a decrease in SLA in red spruce in the clearcut only (Figure 2), suggesting that a larger increase in PPF is required for SLA acclimation in red spruce compared with balsam fir.

Foliage nutrient concentrations

Effects of partial overstory removal on nutrient availability and uptake are not well known (Kranabetter and Coates 2004), and our results provide new information for red spruce and balsam fir. Concentrations of N in 1-year-old needles of red spruce increased with increasing partial BA removal (Figure 3), which may be explained by higher allocation to the upper part of the shoots or to sun needles in response to an increase in PPF (Hollinger 1996, Stenberg et al. 1998). Furthermore, a reduction in the living root system at the stand level can contribute to increased N availability for the residual trees (Vitousek and Matson 1985). In the clearcut, lower foliar N concentration suggests increased leaching or an important post-cut uptake by competitive species. Likewise, the decrease in K concentration in red spruce foliage and a similar trend for balsam fir may reflect post-cut leaching of this mobile element (Rosén and Lundmark-Thelin 1987, Duchesne and Houle 2006) or assimilation by neighboring vegetation. Lower K concentrations were also observed by Richardson (2004) in sun needles compared with shade needles for both red spruce and balsam fir, suggesting a lower K allocation under conditions of higher PPF. Our results indicate that the impact of overstory removal on divalent cations Ca and Mg was clearly detectable in balsam fir only. The observed increase in foliar Ca concentration with increasing partial BA removal is in line with results of Richardson (2004) who observed higher Ca concentrations in sun needles of balsam fir compared with shade needles. Furthermore, the decrease in foliar Mg concentration with increasing partial BA removal in our study is similar to results reported by from Kranabetter and Coates (2004) for hybrid spruce ($P. \text{glauca (Moench) Voss \times } P. \text{sitchensis}$). In our study, foliar concentrations of N, P, Ca and Mg were consistently higher for balsam fir than for red spruce, whereas K concentrations were similar for both species, which accords with the findings of Richardson (2004).

Growth responses

Water relations, gas exchange and growth patterns suggest that, after a few years, the advance regeneration was acclimated to the moderate increases in irradiance created by partial overstory removal. Beyond this crucial acclimation period, our growth results are in line with the accepted knowledge that well-established red spruce requires at least 50% of full sunlight for optimal growth (Blum 1990, Seymour 1995). Five years after the treatments, the best growth of red spruce was

Table 3. Analyses of variance (covariance) and associated probabilities ($P > F$) for effects of treatment and sampling date on initial height (H_0), final height (H_f), final diameter (D_f), height growth (HG), lateral shoot growth (LG) and HG/LG ratio, measured on advance regeneration of Picea rubens and Abies balsamea.

<table>
<thead>
<tr>
<th>Source of variation</th>
<th>df1</th>
<th>H_0</th>
<th>H_f</th>
<th>D_f</th>
<th>HG</th>
<th>LG</th>
<th>HG/LG</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>1</td>
<td>–</td>
<td>< 0.0001</td>
<td>< 0.0001</td>
<td>–</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>$S \times C$</td>
<td>4</td>
<td>0.0008</td>
<td>< 0.0001</td>
<td>< 0.0001</td>
<td>< 0.0001</td>
<td>< 0.0001</td>
<td>< 0.0001</td>
</tr>
<tr>
<td>$S \times C$ lin</td>
<td>(1)</td>
<td>< 0.0001</td>
<td>< 0.0001</td>
<td>< 0.0001</td>
<td>< 0.0001</td>
<td>< 0.0001</td>
<td>< 0.0001</td>
</tr>
<tr>
<td>$S \times C$ qua</td>
<td>(1)</td>
<td>0.1586</td>
<td>0.4729</td>
<td>0.0531</td>
<td>0.2701</td>
<td>0.0196</td>
<td>0.8422</td>
</tr>
<tr>
<td>T</td>
<td>5</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>< 0.0001</td>
<td>< 0.0001</td>
<td>< 0.0001</td>
</tr>
<tr>
<td>$C \times T$</td>
<td>20</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>0.0427</td>
<td>0.0303</td>
<td>0.0230</td>
</tr>
<tr>
<td>$S \times T$</td>
<td>5</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>< 0.0001</td>
<td>< 0.0001</td>
<td>< 0.0001</td>
</tr>
<tr>
<td>$S \times C \times T$</td>
<td>20</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>0.0002</td>
<td>0.1744</td>
<td>0.0214</td>
</tr>
</tbody>
</table>

1 Degrees of freedom of numerator; values in parentheses refer to contrasts. To simplify table presentation, some nonsignificant or less important fixed effects and contrasts, as well as all random effects, are not shown.
observed in the clearcut (Figure 4), where PPF varied from 45 to 65% of full light (Prévost 2008), compared to partial cuts receiving between 15 and 21% of full light. Despite a lower H_0, balsam fir surpassed red spruce in height six years after cutting, mainly because of its superior growth potential in partial cuts. It is known that balsam fir exhibits better juvenile growth after partial overstory removal than red spruce (Moores et al. 2007, Pothier and Prévost 2008). It is also known that firs have a higher capacity than spruces for horizontal crown expansion in partial shade (Messier et al. 1999, Claveau et al. 2002, Mori and Takeda 2004). In our study, HG/LG differences between red spruce and balsam fir were minimal compared with the results of other studies (Takahashi 1996, Mori and Takeda 2003). Growth differences between red spruce and balsam fir will decrease with stand development, because growth of balsam fir tends to peak earlier (Davis 1989). Moreover, HG of balsam fir showed a slight drop at Year 6 in our study. Even if balsam fir initially had a slight competitive advantage over red spruce, it will be necessary to monitor future growth to confirm the long-term response. Recently, Fortin (2005) suggested that competition by balsam fir would not be a major cause of red spruce depletion.

Growth of advance regeneration of red spruce under partial overstory conditions seems to depend mainly on additional carbon gain brought about by enhanced photosynthesis in response to increased PPF. Acclimation of balsam fir in partial cuts was partly physiological, but mainly morphological (cf. Stanciou and O’Hara 2006). Adjustment of SLA appears to underlie the growth enhancement of this species in moderate light. According to Evans and Poorter (2001), changes in morphological traits, such as SLA, are more effective at increasing carbon gain than cellular-level acclimation. A reduction in SLA with increasing light availability may permit a higher photosynthetic capacity (Jordan and Smith 1993). However, other hypotheses could explain the higher growth rate of balsam fir compared with red spruce under partial overstory conditions. For example, balsam fir could have a higher light-use efficiency, with high foliar N (Figure 3) enabling more effi-
cient light-capture and higher A_{max} in partial shade. It is also possible that a higher respiration rate in red spruce than in balsam fir (not measured) enables the latter species to maintain a more positive carbon balance at low or moderate PPF (Messier et al. 1999, Grassi and Bagnaresi 2001, Pothier and Prévost 2002). Finally, balsam fir has a longer seasonal period of active photosynthesis than red spruce (Gage and DeHayes 1992), which likely contributes to its superior growth in light-limited conditions.

Acknowledgments

We thank Steeve Pepin for revising an earlier version of the manuscript. Debra Christiansen-Stowe for linguistic revision and Lucie Jobin for her valuable assistance during the bibliographic research. We thank Daniel Guimond for leaf area measurements, laboratory team of Carol DeBlois for nutrient analysis, as well as Louis Blais and Josianne DeBlois for statistical advice. Finally we also thank Jean-Pierre Lapointe, Maurice Gagnon, Carlo Gros-Louis, Julie Forgues, Serge Williams, Éric Saulnier and many summer students for their help during field measurements.

References

